This is the first part of a two paper sequence in which we prove the global-in-x stability of the classical Prandtl boundary layer for the 2D, stationary Navier-Stokes equations. In this part, we provide a construction of an approximate Navier-Stokes solution, obtained by a classical Euler- Prandtl asymptotic expansion. We develop here sharp decay estimates on these quantities. Of independent interest, we establish without using the classical von-Mise change of coordinates, proofs of global in x regularity of the Prandtl system. The results of this paper are used in the second part of this sequence, [IM20] (arXiv:2008.12347), to prove the asymptotic stability of the boundary layer as \(\varepsilon \rightarrow 0\) and \(x \rightarrow \infty\).